COMMON PRE-BOARD EXAMINATION 2022-23

Subject: Mathematics (Standard) (041)

Class: X
Date:

Time: 3 Hours
Max. Marks: 80

General Instructions:

1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.
8.Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Q.No.		Marks	
	SECTION - A		
	(Section A consists of 20 questions of 1 mark each)		
1.	The sum of the exponents of prime factorization of 2160 is: (a) 4 (b) 5 (c) 6 (d) 7	1	
2.	If α and β are the zeros of a polynomial $x^{2}-5 x+4$,then the value of $\alpha+\beta-2 \alpha \beta$ is: (a) 5 (b) 4 (c) 3 (d) -3	1	
3.	The discriminant of the quadratic equation $3 x^{2}-\sqrt{3} x-k=0$ is zero,then the value of k is: (a) $\frac{1}{4}$ (b) $\frac{-1}{4}$ (c) 2 (d) $\frac{4}{5}$	1	
4.	The pair of equations $x=0$ and $x=5$ has: (a) no solution (b) unique/one solution (c) two solutions (d) infinitely many solutions	1	
5.	The distance of the point $\mathrm{P}(-\sin \Theta, \cos \Theta)$ from the origin is: (a) 2units (b) $\sqrt{2}$ units (c) 1unit (d) 5units	1	
6.	ABCD is a trapezium with $\mathrm{AD} \\| \mathrm{BC}$ and $\mathrm{AD}=4.5 \mathrm{~cm}$. If the diagonals AC and BD intersect each other at O such that $\frac{A O}{C O}=\frac{D O}{B O}=\frac{1}{2}$, then $\mathrm{BC}=$ (a) 6 cm (b) 9 cm (c) 8 cm (d) 7 cm	1	
7.	If $\sin \theta=\frac{1}{\sqrt{2}}$, then the value of $\left(2 \cot ^{2} \theta+2\right)$ is: (a) 4 (b) 6 (c) 5 (d) 3	1	

8. If $\cos \mathrm{A}=\frac{12}{13}$, then the value of $\left(\tan ^{2} \mathrm{~A}+1\right)$ is :
(a) $\frac{13}{12}$
(b) $\frac{169}{144}$
(c) $\frac{144}{169}$
(d) $\frac{5}{13}$
9. In the given figure, $\mathrm{XY} \| \mathrm{QR}, \frac{P Q}{X Q}=\frac{7}{3}$ and $\mathrm{PR}=6.3 \mathrm{~cm}, \mathrm{YR}=$

(a) 1.7 cm
(b) 2.7 cm
(c) 3 cm
(d) 4.2 cm
10. $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$ such that, $\mathrm{AB}: \mathrm{PQ}=3: 5$, if $\mathrm{QR}=10 \mathrm{~cm}$, then the side BC is equal to:
(a) 8 cm
(b) 9 cm
(c) 15 cm
(d) 6 cm
11. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of $78^{\circ}, \angle \mathrm{AOB}=3 \mathrm{x}$, then the value of x is:
(a) 30°
(b) 36°
(c) 34°
(d) 45°
12. If the perimeter of a semicircular protractor is 72 cm where $\pi=\frac{22}{7}$, then the diameter of protractor is:
(a) 7 cm
(b) 10 cm
(c) 14 cm
(d) 22 cm
13. 3 cubes each of volume $27 \mathrm{~cm}^{3}$ are joined end to end. Then the surface area of the resulting cuboid is:
(a) $54 \mathrm{~cm}^{2}$
(b) $104 \mathrm{~cm}^{2}$
(c) $126 \mathrm{~cm}^{2}$
(d) $88 \mathrm{~cm}^{2}$
14. Construction of a cumulative frequency table is useful in determining the
(a) Mean
(b) Median
(c) Mode
(d) all the above
15. In the AP $-20,-17,-14,-11, \ldots \ldots \ldots$, the value of $a_{20}-a_{15}$ is:
(a) 59
(b) 78
(c) -42
(d) 69

$$
\left(\begin{array}{ll}
\\
(\mathrm{C}) \\
\hline
\end{array}\right.
$$

16. For the following distribution,

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency	10	15	12	20	9

the class mark of the modal class is
(a) 11.5
(b) 12.5
(c) 1.50
(d) 15.5
17. A single letter is selected at random from the word PROBABILITY. Then the probability for selecting a vowel is:
(a) $\frac{4}{11}$
(b) $\frac{5}{11}$
(c) $\frac{1}{11}$
(d)) $\frac{6}{11}$
18. $(\sin \mathrm{A}+\cos \mathrm{A})^{2}-(\sin \mathrm{A}-\cos \mathrm{A})^{2}$
(a) $\sin \mathrm{A} \cdot \cos \mathrm{A}$
(b) $4 \sin \mathrm{~A} \cdot \cos \mathrm{~A}$
(c) $2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}$
(d) $3 \sin \mathrm{~A} \cdot \cos \mathrm{~A}$
19. DIRECTION:

In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R).
Choose the correct option.
Statement A (Assertion):
The HCF of two numbers is 5 and their product is 150 , then their LCM is 30
Statement R(Reason):
For any two positive integers a and $b, \operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$.

	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A). (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.	
20.	Statement A (Assertion): The point $(-1,6)$ divides the line segment joining the points $(-3,10)$ and $(6,-8)$ in the ratio $2: 7$ internally. Statement R(Reason) : Given three points, i.e. A, B, C form an equilateral triangle, then $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$. (a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A). (c)Assertion (A) is true but reason (R) is false. (d)Assertion (A) is false but reason (R) is true	1
	(Section B consists of 5 questions of 2 marks each)	
21.	If the system of equations $\alpha x+3 y=\alpha-3,12 x+\alpha y=\alpha$ has no solution, find the value of α.	2
22.	In the given figure, two triangles ABC and DBC are on the same base BC in which $\angle \mathrm{A}=\angle \mathrm{D}=90^{\circ}$.If CA and BD meet each other at E , show that $\mathrm{AE} \times \mathrm{CE}=\mathrm{BE} \times \mathrm{DE}$.	2
23.	In the figure, the chord AB of the larger of the two concentric circles, with centre O , touches the smaller circle at C . Prove that $\mathrm{AC}=\mathrm{CB}$.	2
24.	A pendulum swings through an angle of 30° and describes an arc 17.6 cm in length. Find the length of pendulum.	2

	OR What is the perimeter of the sector with radius 10.5 cm and sector angle 60°.		
25.	If $\tan ^{2} 45^{\circ}-\cos ^{2} 30^{\circ}=x \tan ^{2} 60^{\circ} \cos ^{2} 45^{\circ}$, find the value of x. OR If $\tan \theta=\frac{1}{\sqrt{3}}$, what is the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$.	2	
	(Section C consists of 6 questions of $\mathbf{3}$ marks each)		
26.	Given that $9-5 \sqrt{3}$ is irrational.	3	
27.	Form the quadratic polynomial whose zeroes are $3+\sqrt{7}$ and $3-\sqrt{7}$.	3	
28.	Solve the quadratic equation by quadratic formula: $3 x^{2}-4 \sqrt{3} x+4=0$. OR For what value of k does the quadratic equation $(k-5) x^{2}+2(k-5) x+2=0$ have equal roots.	3	
29.	Prove that: $(\sin \Theta+\operatorname{cosec} \theta)^{2}+(\cos \Theta+\sec \Theta)^{2}=7+\tan ^{2} \Theta+\cot ^{2} \Theta$	3	
30.	A circle touches the side $B C$ of a $\triangle A B C$ at point P and also touches the sides $A B$ and $A C$ produced at Q and R respectively. Prove that $A Q=\frac{1}{2}$ (Perimeter of $\triangle A B C$) OR Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.	3	
31.	A box contains cards on which the numbers from 2 to 101 are marked. A card is drawn from the bag at random,find the probability that number on the card drawn is: (i)a multiple of 7 (ii)a perfect square number (iii)a two digit number.	3	
	SETCION-D (Section D consists of 4 questions of 5 marks each)		
32.	A plane left 30 minutes late than its scheduled time and in order to reach the destination 1500 km away in time, it had to increase its speed by $100 \mathrm{~km} / \mathrm{h}$ from the usual speed. Find its usual speed. OR In a class test, the sum of Aran's marks in Hindi and English is 30. Had he got 2 marks more in Hindi and 3 marks less in English, the product of the marks would have been 210 . Find his marks in the two subjects.	5	
33.	(i) ABCD is a trapezium with $\mathrm{AB} \\| \mathrm{DC} . \mathrm{E}$ and F are points on non-parallel sides AD and BC respectively such that EF is parallel to AB . Show that $\frac{A E}{E D}=\frac{B F}{F C}$.	5	

	Based on the above information give the answers for her questions. 1.Form an AP for the given situation. 2. What is the minimum number of days he needs to practice till his goal is achieved? In which day he completes 200 m in 35 seconds? 3.If $2 \mathrm{x}, \mathrm{x}+10,3 \mathrm{x}+2$ are three consecutive terms of an AP, find the value of x.	A group of students of class X visited India Gate on an education trip. The teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumental sandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formerly called the Kingsway), is about 42 metres in height.

